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A short synthesis of 5,6-dihydro-5-hydroxy-2(1H)-pyridone was achieved from L-serine employing Horn-
er–Emmons olefination as the key step.
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Figure 1. Structures of 2-pyridone-derived alkaloids.
The 2(1H)-pyridone ring system and the corresponding dihydro
and tetrahydro derivatives are found abundantly in a wide variety
of naturally occurring alkaloids and novel synthetic biologically ac-
tive molecules.1 Heterocycles incorporating a 2(1H)-pyridone
framework constitute an extensively studied class of compounds
owing to their diverse biological activities ranging from anti-HIV,
antibacterial and antifungal to free radical scavengers. Several 3-
amino-2-pyridinone acetamides act as thrombin inhibitors. Some
non-nucleoside-3-aminopyridin-2(1H)-ones have been reported
to exhibit HIV-1-specific reverse transcriptase inhibitory proper-
ties.2 In addition, dihydro and tetrahydro derivatives of 2(1H)-pyri-
done have been applied as scaffold for the construction of
constrained aminoacids,3 quinoline4a and isoquinoline4b deriva-
tives, indolizidine,4c quinolizidine alkaloids and polyhydroxylated
piperidines5,7 with important pharmaceutical activity.

5,6-Dihydro-5-hydroxy-2(1H)-pyridone alkaloid 1 has been iso-
lated from the whole plant of Piper sintenense which exhibits cyto-
toxicity against P-388, H-T-29 or A-549 cell lines in vitro.6 It is an
important building block for the synthesis of (R)-pipermethys-
tine1b and several other polyhydroxylated pyridones7 such as
(3R,4R,5S)-3,4,5-trihydroxy-piperidine-2-one and (3R,4S,5S)-3,4,5-
trihydroxy-piperidine-2-one (Fig. 1). Despite its apparent simple
structure, surprisingly there has been no report on the synthesis
of N-unsubstituted pyridone 1 except for a sole publication of its
S-enantiomer which has been synthesized by Herdeis et al. starting
from D-ribonolactone.6b
ll rights reserved.

: +91 20 25902629.
Nevertheless, there are few methods available in the literature
for preparing the chiral nonracemic N-substituted pyridone deriv-
atives starting from either achiral or chiral pool starting materials
and typically requiring a large number of synthetic steps.1

As a part of our research on the asymmetric synthesis of
hydroxylated piperidines,8 we became interested in developing a
route to 2-pyridone derivatives. Herein we wish to report a new
approach to 5,6-dihydro-5-hydroxy-2(1H)-pyridone from L-serine
using Horner–Emmons olefination as the key step.

As illustrated in Scheme 1, the synthesis of 1 commenced with
commercially available L-serine as a chiral pool starting material.
Thus, L-serine 2 was initially transformed into the diol ester 3 by
the reported procedure.9 Selective primary hydroxyl protection of
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Scheme 1. Reagents and conditions: (a) NaNO2, aq H2SO4, 3 days, 100%; (b) (i) TsCl,
Bu2SnO, Et3N, CH2Cl2, 0 �C, 2 h, 75%; (ii) NaN3, DMF, 80 �C, 70%; (c) Ac2O, Et3N,
DMAP, CH2Cl2, 0 �C-rt, 3 h, 70%; (d) H2, Pd(OH)2/C, Boc2O, MeOH, 5 h, 75%; (e)
DIBAL-H, CH2Cl2, �78 �C, 2 h, 70%; (f) (i) IBX, EtOAc, reflux, 2 h; (ii) Ph3P@CHCO2Me,
MeOH, 0 �C, 24 h, 70%.

N3

OH

BocHN

OH

BocHN

OTBDPS

BocHN
OMe

OOTBDPS

4 10

11 12

H2N
OMe

OOTBDPS

N

TBDPSO

O

H

N

HO

O

H

1

13

a b

c d

e

OMe

O

OMe

O

OMe

O

Scheme 2. Reagents and conditions: (a) H2, Pd(OH)2/C, Boc2O, MeOH, 5 h, 75%; (b)
TBDPS-Cl, imidazole, DMAP, CH2Cl2, 0 �C, 4 h, 80%; (c) (i) DIBAL-H, toluene, �78 �C,
2 h; (ii) (CH3–C6H4O)2–P(O)CH2CO2Me, NaH, �78 �C, THF, 5 h, 72%; (d) TMS-OTf,
2,6-lutidine, CH2Cl2, 0 �C, 5 h, then satd NaHCO3, 24 h, 55%; (e) TBAF, THF, 0 �C-rt,
12 h, 40%.
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diol was performed with tosyl chloride in the presence of catalytic
amount of dibutyltin oxide10 followed by the nucleophilic dis-
placement of resulting tosylate with sodium azide to afford com-
pound 4 in 70% yield. The acylation of hydroxyl group (4?5)
followed by azide reduction in the presence of Boc2O under hydro-
genation conditions11 using Pd(OH)2/C furnished the desired ami-
no alcohol 6 in 75% yield. Subsequent reduction using 2 equiv of
DIBAL-H at �78 �C produced alcohol 7 in 70% yield. It may be noted
that we did not observe any cleavage of acetoxy group during DI-
BAL-H reduction. Oxidation of alcohol 7 with IBX followed by
two carbon Wittig olefination in MeOH12 at 0 �C resulted in a mix-
ture of both cis- and trans-isomers in the ratio 4:3. The ratio of de-
sired cis-isomer could not be improved even after performing the
reaction at lower temperature (Scheme 1).

The poor yield obtained for cis-isomer could probably be attrib-
uted to the electron-withdrawing effect of acetoxy group. To cir-
cumvent the problem of low yield, we thought of masking the
hydroxyl group preferably with a bulky protecting group. Towards
this end, the azido compound was first reduced to amine in the
presence of Boc2O under hydrogenation conditions using
(Pd(OH)2/C) (4?10) followed by the hydroxyl group protection
with tert-butyldiphenylsilyl chloride in the presence of imidazole
to furnish compound 11 in 80% yield (Scheme 2). The ester group
was reduced with 1.2 equiv of DIBAL-H at �78 �C to the corre-
sponding aldehyde and subsequently subjected to two carbon
Wittig olefination in MeOH at �78 �C. However, we could not ob-
serve much improvement in the ratio of cis-isomer. With an aim
to prepare the required cis-compound, we then employed the
new Horner–Emmons reagent, diarylphosphonoacetate for the
highly selective synthesis of Z-unsaturated ester as reported by
Ando.13 Thus, the aldehyde obtained from 11 was treated with
Horner–Emmons reagent, methyl (ditolylphosphono) acetate to
produce the cis-olefin 1214 as the major isomer (98:2) as confirmed
from the 1H NMR spectroscopy of the crude product. The Z-selec-
tivity of the (diarylphosphono) acetate reagent is a result of kinetic
control and can be interpreted by the predominant formation of
erythro adduct which irreversibly collapses to the Z-olefin. This
could probably be attributed to the enhanced kinetic selectivity
for the erythro adduct due to the steric hindrance of the aryl group
and also silyloxy group at a-position rather than the electronic
effect.13 The Boc group was deprotected under standard conditions
using TMS-OTf and 2,6-lutidine as base15 and subsequently neu-
tralized with saturated sodium bicarbonate solution to produce
the pyridone derivative 13 in 55% yield.6b,16 Finally, TBDPS group
was deprotected with tetrabutyl ammonium fluoride to furnish
the desired pyridone 1 as an oily compound in 40% yield, [a]25

+53.4 (c 0.23, MeOH); [lit.6a [a]26 +55.7 (c 0.2, MeOH)]. The spectral
data of pyridone 1 were in accord with those described in the
literature.6a

In conclusion, we have achieved a concise synthesis of 5, 6-
dihydro-5-hydroxy-2(1H)-pyridone from L-serine in overall 5%
yield using Horner–Emmons olefination as the key step. The gener-
ality of method shown has significant potential of its further exten-
sion to the other isomer and also to the construction of variety of
materials derived from 2-pyridone derivatives. Currently studies
are in progress towards this direction.
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